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To provide the most efficient conditions for spin decoupling with
least RF power, master calibration curves are provided for the max-
imum centerband amplitude, and the minimum amplitude for the
largest cycling sideband, resulting from STUD1 adiabatic decou-
pling applied during a single free induction decay. The principal
curve is defined as a function of the four most critical experimental
input parameters: the maximum amplitude of the RF field, RFmax,
the length of the sech/tanh pulse, Tp, the extent of the frequency
sweep, bwdth, and the coupling constant, Jo. Less critical parameters,
the effective (or actual) decoupled bandwidth, bweff, and the sech/
tanh truncation factor, b, which become more important as bwdth is
decreased, are calibrated in separate curves. The relative importance
of nine additional factors in determining optimal decoupling perfor-
mance in a single transient are considered. Specific parameters for
efficient adiabatic decoupling can be determined via a set of four
equations which will be most useful for 13C decoupling, covering the
range of one-bond 13C1H coupling constants from 125 to 225 Hz, and
decoupled bandwidths of 7 to 100 kHz, with a bandwidth of 100 kHz
being the requirement for a 2 GHz spectrometer. The four equations
are derived from a recent vector model of adiabatic decoupling, and
experiment, supported by computer simulations. The vector model
predicts an inverse linear relation between the centerband and max-
imum sideband amplitudes, and it predicts a simple parabolic rela-
tionship between maximum sideband amplitude and the product
JoTp. The ratio bwdth/(RFmax)2 can be viewed as a characteristic time
scale, tc, affecting sideband levels, with tc ' Tp giving the most
efficient STUD1 decoupling, as suggested by the adiabatic condition.
Functional relationships between bwdth and less critical parameters,
bweff and b, for efficient decoupling can be derived from Bloch-
equation calculations of the inversion profile for a single sech/tanh
pulse. Residual splitting of the centerband, normally associated with
incomplete or inefficient decoupling, is not seen in sech/tanh decou-
pling and therefore cannot be used as a measure of adiabatic decou-
pling efficiency. The calibrated experimental performance levels
achieved in this study are within 20% of theoretical performance
levels derived previously for ideal sech/tanh decoupling at high
power, indicating a small scope for further improvement at practical
RF power levels. The optimization procedures employed here will be
generally applicable to any good combination of adiabatic inversion
pulse and phase cycle. © 1998 Academic Press
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INTRODUCTION

Broadband adiabatic decoupling has been shown to be more
efficient than composite-pulse decoupling, in terms of average
power deposition for large bandwidths (1), but the former is
characterized by many adjustable parameters. The goal of this
study is to make the application of adiabatic decoupling easy
and transparent for any bandwidth within a reasonable exper-
imental range by calibrating all variables required for the most
efficient decoupling at the lowest level of RF power. Although
adiabatic pulses are insensitive to RF miscalibration, providing
accurate spin inversion over a large range of RF power levels,
the minimization of decoupling power, and thus sample heat-
ing, is considered important for applications to valuable heat-
sensitive samples such as13C-labelled proteins. While the
procedures adopted here are generally applicable to any range
of J, and any adiabatic decoupling scheme, the detail of this
article is restricted to broadband13C (125 Hz, J , 225 Hz)
sech/tanh decoupling.

This work is the culmination of two foundation studies: An
investigation of cycling sidebands based on a large number of
experimental observations with some supporting theory (2),
and a theoretical vector model of adiabatic decoupling at the
high power limit with supporting experiments (3), published in
this issue. We now extend that research by performing com-
puter simulations and experimental measurements of sideband
and centerband amplitudes over a more extensive range of
decoupling parameters than was used previously, employing
the more recent phase-cycled adiabatic decoupling scheme
STUD 1 (4). The net result is a set of calibration curves and
explicit equations for determining decoupling parameters that
provide optimal performance under practical experimental con-
ditions, as opposed to theoretical results derived for idealized
conditions.

In common with previous descriptions (1–3) of sech/tanh (or
hyperbolic secant) (5) pulses, the sech amplitude modulation
and tanh frequency sweep can be written as

B1 5 RFmaxsechb~1 2 2t/Tp!, [1]
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and

DH 5 ~bwdth/ 2!tanhb~1 2 2t/Tp 1 s!. [2]

A valueb 5 5.3 is typically chosen to truncate the exponential
decay of the sech function at a value of 0.01, ands is the
resonance offset of the pulse in units ofbwdth/ 2 wheres 5 0
denotes on-resonance decoupling. A minimum requirement for
the user is to know the values of the maximum amplitude of the
RF field,RFmax, the length of the sech/tanh pulse,Tp, and the
extent of the frequency sweep,6bwdth/ 2, for most efficient
decoupling for a chosen decoupled bandwidth and coupling
constant,Jo.

While these four values are the most critical, we consider a
further eleven factors which are important in adiabatic decou-
pling. We begin this work by constraining most of the param-
eters by practical considerations. We then consider analytical
expressions, derived from the vector model of adiabatic decou-
pling (3), which characterize the performance of sech/tanh
decoupling both on and off resonance under ideal conditions of
high power. We show that these expressions are applicable to
on-resonance decoupling at lower RF power required for the
most efficient conditions, where phase cycles are used to
compensate for non-idealities in the inversion pulses, thus
yielding an objective standard and providing simple linear or
parabolic relationships between the maximum sideband ampli-
tude,MSB, the centerband amplitude,CB, and the four critical
variables. Finally, by extending these relationships as far as
possible off resonance, we determine the effective, or actual
useable, decoupled bandwidth,bweff, which is closely related
to bwdthand can be defined by criteria based onMSBandCB.
A straightforward relationship betweenb and bwdth is also
demonstrated. This strategy achieves the overall goals of the
study, producing the most efficient parameters for general
broadband decoupling.

VARIABLES IN ADIABATIC DECOUPLING

The prime consideration for any NMR experimentalist,
when presented with a new technique, is to quickly ascertain
the most efficient conditions for its implementation. Broadband
adiabatic decoupling is a formidable challenge since it is char-
acterized by a number of variables: The required quality of the
decoupled spectrum; the degree of sample heating; the pulse
sequence preceding decoupling; the form of the adiabatic in-
version pulse; the number of increments within the pulse
waveform; the pulse phase cycle; the length of the free induc-
tion decay; the number of NMR transients required for opti-
mum performance; RF inhomogeneity;bwdth; the frequency
offset,s; bweff; RFmax (or the related average RF power);Tp;
and Jo. We also defineb/RF2 5 bwdth/(RFmax)

2, which ap-
pears frequently in the analysis below.

Our task in recommending conditions for efficient decou-
pling is to obtain a sufficient understanding of the effect of

each variable so that we do not inadvertently arrive at a false
efficiency maximum wildly different from the true maximum,
a pitfall of multi-variate problems (field shimming is an exam-
ple of a multi-variate problem familiar to practicing spectros-
copists). Appropriate settings for some parameters can be
chosen at the outset, and it is possible to leave optimization of
the least sensitive variables to a later stage, permitting the
study to focus on the most critical factors. Given the complex
interplay of a large number of variables, progress toward
optimal decoupling performance is necessarily an iterative
process (like field shimming). After three years of develop-
mental work by the authors, this process has both an historical
and a logical basis, including trial-and-error experimentation,
serendipitous observations, experiments designed on the basis
of theoretical models such as the vector model, and computer
simulations.

Performance Criteria

While the quality of the decoupled spectrum is a dependent
variable, it is necessary to choose a criterion of decoupling
performance in advance of optimization, and decide on a
reliable means of measuring this quantity. In our first detailed
study of the experimental calibration of adiabatic decoupling,
we focused on the measurement of cycling sidebands (2). We
found that sidebands can be measured reproducibly to an
accuracy of better than 0.1% relative to the centerband height,
CB. While we proposed several standards (2), the maximum
sideband amplitude,MSB, across the effective decoupled
bandwidth can be easily determined using a computer macro,
and we now suggest that theMSB is a true reflection of
decoupling efficiency. In part this derives from the even dis-
tribution of sidebands across the effective bandwidth for sech/
tanh decoupling so that an increase inMSB reflects a general
increase, and any method which reduces the maximum side-
band will tend to reduce all sidebands. Conversely, application
of a procedure which reduces sidebands across only a portion
of the effective bandwidth will not reduce theMSBunless one
accepts a reduction in the effective bandwidth—a hypothetical
method of this type would be less useful than methods which
reduce theMSB over the full decoupled bandwidth. For the
experimentalist, the size of the maximum sideband is a critical
issue because of the need to distinguish between the real
spectrum, including minor chemical impurities, and spurious
resonances.

Other criteria, such as the amplitude or width of the center-
band may seem more directly relevant to decoupling, but they
cannot be measured experimentally with the same accuracy as
MSB levels, and so do not lend themselves readily to an
evolutionary improvement of decoupling performance. The
width of a resonance cannot be measured accurately to two
significant figures, and both the amplitude and width of the
centerband are subject to variable experimental factors such as
field shimming. In contrast, since we measureMSB relative to
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CB, a relativeMSBcriterion is independent of natural line-
width. In a later section we will show that a calibration
curve based on sideband amplitudes can be converted to a
calibration curve for centerband amplitudes via computer
simulations, with much greater accuracy than can be
achieved by measuringCB experimentally. This permits us
to convert the relative experimentalMSB measurements to
absolute values. We will also show that for adiabatic de-
coupling, centerband linewidths are constant across a fre-
quency width that actually exceeds the effective bandwidth,
although the central peak height decreases with decreasing
decoupling efficiency, and so linewidths cannot be used as a
measure of decoupling efficiency.

In terms of performance criteria, a common standard is to
requireCB to be greater than 80% of its maxium across the
effective decoupled bandwidth. For previous studies using
STUD, we used the limit of a 5%MSB, which corresponds to
80% CB. For the improved phase cycles employed in STUD1,
a limit of 80% forCB producesMSB levels of about 3.5% or
less. We expect that in some applications, maximum sidebands
as low as 0.5% may be needed, so for this dependentMSB
variable we will concentrate on the range 0.5 to 3.5%.

Sample Heating

The amount of sample heating that occurs during decoupling
is also a dependent variable, primarily determined by the
average decoupling power which is proportional to (RFmax)

2.
While the cooling efficiency within the NMR probe is also
important, the guideline in relation to this variable is straight-
forward—the average RF power delivered to the sample should
be kept to a minimum. This is the major goal in optimizing
decoupling schemes. Sample heating can mask the effective-
ness of a decoupling scheme by changing the shim parameters
for best spectral resolution. Characterization of the decoupling
scheme by the measurement of relative sideband amplitudes,
rather than amplitude or width of the centerband, avoids this
ambiguity.

The Pulse Sequence Preceding Decoupling

This variable factor provides a good example of the diffi-
culties that can arise when a critical issue has been overlooked.
As described in detail elsewhere (3, 6), when decoupling the I
spins in an IS spin system, the existence of anti-phase S
magnetization just prior to decoupling can lead to additional
signals which we have dubbed “coherence sidebands.” This
problem was not recognized prior to the work of Ref. (2) and,
in consequence, the resulting calibration curves overestimated
the sidebands. Fortunately this did not change the major con-
clusions of that study. However, differences in results obtained
at 600 MHz compared to 500 MHz suggested RF inhomoge-
neity, whereas the real cause was differences in the level of
coherence sidebands. In the present study care has been taken
to ensure that the preparation pulse sequence is ideal so that no

coherence sidebands are generated. Solutions to the general
problem of eliminating coherence sidebands in a single tran-
sient have been published (6).

The Adiabatic Inversion Pulse

A central tenet of composite-pulse decoupling, introduced
by Freeman and co-workers (7), is that the quality of decou-
pling depends in the first instance on the quality of the con-
stituent inversion pulses. The same principle can be inferred
from the vector model, as presented in Ref. (3), Fig. 1a–1c. If
the first inversion is not perfect, the S spins are not refocused
at the end ofTp, some S signal is lost, and the next pulse in the
decoupling sequence must attempt to refocus the S spins—that
represents the first possible opportunity for departure from
ideality.

We have based our work on the sech/tanh (5) pulse because,
in terms of percentage inversion across the bandwidth at fixed
values of average RF power, this well-known adiabatic pulse
has not been improved upon. It easily outperforms the con-
stant/linear (CHIRP), constant/tan, and sin/cos adiabatic pulses
(8), and the more recent WURST-n pulses (9) with linear
frequency sweeps, as demonstrated previously (2, 10). For
example, the sech/tanh inversion pulse has an effective band-
width of at least 47.5 kHz whenbwdth 5 50 kHz, thus
limiting any possible improvement to a few percentage points.
The choice of adiabatic pulse, discussed further under Conclu-
sions, as an alternative to the sech/tanh pulse can be safely
ignored until the more critical parameters are optimized.

In the interim, in choosing the sech/tanh pulse, we will
characterize the performance of yet another variable, the point
at which the sech and tanh sweeps are truncated. Traditionally,
the amplitude modulation is truncated at the 1% level, when
sech(b) 5 0.01 (b 5 5.3). However, we have previously
determined (4) that optimization of this truncation point can
only increase the effective bandwidth by a few percentage
points, so this variable can also be left to the final stages of
optimization.

The Number of Increments within the Pulse Waveform

In usual experimental practice, the adiabatic pulse wave-
forms are digitized inni increments, and this results in a
decoupled bandwidth which is repeated at frequencies centered
on 6ni/Tp. To prevent these profiles overlapping the central
decoupled profile, it was noted in Ref. (2) that ni must be
significantly greater thanTp bwdth. In the course of the many
detailed measurements made for this study, it was found that
measurable reductions inMSB could be observed by increas-
ing ni until it was greater than 2.5Tp bwdth and this is the
minimum standard now applied.

The Phase Cycle

The choice of phase cycle poses a problem which has many
solutions, and it is probably impossible to claim that the
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ultimate cycle has been determined. However, there are some
realistic approaches to this question. While some specific phase
cycling algorithms (4, 7, 11, 12) have been used to improve
decoupling performance, no general algorithm has been pro-
posed that assures optimal decoupling efficiency. In conse-
quence, we found it necessary to resort to an informed trial-
and-error approach in determining the 112-phase cycle of
STUD1. More than 40 different phase cycles were tested
using theMSB criterion and of these the eight best phase
cycles are listed in Table 1 of Ref. (4) with a progression to
lower MSB for longer phase cycles.

It will be difficult to greatly improve on these cycles. There
are diminishing returns in introducing longer cycles as these
cycles become a large fraction ofT*2, or of the length of the
line-broadened S-spin FID. Table 1 of Ref. (4) shows a 45%
reduction inMSBgoing from the basic 20-phase cycle (13) of
STUD to a 56-phase cycle (14). However, the 112-phase cycle
of STUD1 provides only a further 12% reduction. Later in this
paper we will show that the STUD1 scheme is most efficient
under conditions where it exhibits an overall 60% reduction in
MSBcompared to STUD. Under the same conditions, a further
10% reduction inMSB would be equivalent to ideal decou-
pling in the high power limit where the phase cycle has no
effect, and no further reduction is possible.

The Length of the Free Induction Decay

This semi-independent variable can affect the characteriza-
tion and optimization of a decoupling scheme because of a
potential conflict with the product ofTp and the number of
phases in the decoupling cycle. If that product is greater than
the length of the FID, or greater than the signal acquisition
time, then part of the phase cycle for the decoupling scheme
has no effect. In this study we have avoided the problem by
ensuring that the acquisition time (0.5 s) and the FID (approx-
imately 2 Hz natural linewidth, line-broadened to 3.5 Hz at half
height) are significantly longer than this product. Commonly,
FIDs are a fraction of a second so this aspect reinforces the
expectation of diminishing improvements from longer phase
cycles.

The Number of Transients Required for Optimal
Performance

Our approach to this variable is straightforward. We define
it as an independent variable and set the number at one tran-
sient. There are two important reasons for doing so. First,
determining the most efficient conditions for minimizing the
MSBin one transient ensures that theCB is maximum and thus
overallS/N is maximum. Methods which reduce sidebands via
interference resulting from changed parameters between tran-
sients do not increase the centerband while averaging sideband
intensity to smaller values. Second, in 3D and 4D NMR it is
often necessary to reduce the number of transients for each
increment to provide adequate resolution within a reasonable

total acquisition time. For this reason, pulsed-field gradients
have become popular as an alternative to phase cycling. If
possible, spin decoupling schemes should not increase the
overall number of transients required for each multi-dimen-
sional increment.

If, having determined the optimum conditions for decou-
pling, it is found that sidebands need to be further suppressed
in particular applications, multi-transient methods such as the
accordion technique (variation ofTp) of Starcuket al. (15),
which performs well over the full decoupled bandwidth, can
then be employed. In passing we note that standard multi-
transient methods of reducing sidebands do not always work
with adiabatic decoupling as exemplified by the illustration of
asynchronous decoupling in Ref. (3).

RF Inhomogeneity

All pulse sequences are subject to potential variation of the
RF field across the sensitive volume of the sample, but we see
no effects from adiabatic decoupling that can be ascribed to RF
inhomogeneity. In particular, we obtain close agreement be-
tween theoretical simulations, which assume no RF inhomo-
geneity, and experiment. There are two independent explana-
tions for this. First, modern RF probes have high homogeneity
and the excellent characteristics of the probe used for this work
are listed under Experimental. Furthermore, because the sen-
sitive volumes for S (1H) and I (13C) are closely matched, the
boundaries of the overall volume are sharp because the profile
of the S/N response across the sample is a product of the
individual profiles for each RF pulse. Second, plots of sideband
amplitude versus decreasing RF field strength for adiabatic
decoupling (e.g., as in Fig. 1) show a rather slow rate of
increase in sideband amplitude in the regions where decoupling
is most efficient. Thus a 10% variation say, in RF across the
sample, will give almost identical sideband levels to those
yielded by a single value of RF field strength. Experimental RF
calibrations provide such single values as averages across the
sensitive volume, and so we are able to ignore the potential
problem of RF inhomogeneity in this study.

Bandwidth (bwdth), Effective Bandwidth (bweff), and
Frequency Offset (s)

The bwdth parameter is a critical independent variable.
From previous work (3, 4), for sech/tanh decoupling, maxi-
mum sidebands show a flat response across a wide range of
frequency offset (dimensionless parameter,s) which ultimately
determines the effective bandwidth,bweff. We will seek the
most efficient conditions for STUD1 by concentrating on this
region of flat response, and then determinebweff. For broad-
band sech/tanh decoupling, this is a reasonable procedure
because the effective bandwidth is already known to be a large
fraction of bwdth, and can be maximized after other critical
variables are addressed.
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The Most Critical Variables, bwdth, RFmax, Tp, and Jo

These four parameters remain as critical independent vari-
ables but are also constrained in important ways. In terms of
present magnetic field strengths, and future developments, we
are primarily concerned with broadband decoupling in the 10
to 100 kHz range. Maximum RF field strengths are limited to
about 20 kHz in high resolution NMR but we have found this
sufficient to decouple bandwidths exceeding 500 kHz using
sech/tanh decoupling (10). Limiting the MSB to 3.5% sets the
maximumTp at 2.5 ms for13C decoupling, andJo is known to
be 125–225 Hz for13C.

EXPERIMENTAL

Proton-detected13C-decoupled spectra were obtained as in
previous studies (1, 3, 6) following a heteronuclear spin-echo
difference pulse sequence using a standard 5-mm HCN triple-
resonance PFG probe on a 500-MHz Varian INOVA spectrom-
eter. Three samples were employed: 1.5%13CH3CO2Na in
D2O, doped with sufficient MnCl2 to produce a coupled line-
width of 2.2 Hz,Jo 5 127 Hz; 2%13CH3I in CDCl3, doped
with 0.2% Cr(AcAc)3 relaxation agent, coupled linewidth5
1.7 Hz, Jo 5 150 Hz; and 2% of the isopropyl ester of
H13CO2H in CDCl3, doped with 0.2% Cr(AcAc)3 relaxation
agent, coupled linewidth5 2.0 Hz,Jo 5 223 Hz. Exponential
line broadening was applied to FIDs of 0.5-s duration to
produce coupled linewidths of 3.5 Hz. Equal field gradient
pulses were employed either side of the refocusing pulse in the
spin-echo pulse sequence to eliminate artifact signals, and the
overall 1/Jo spin-echo delay time was set exactly with respect
to each of the aboveJo values.

RF amplitudes were calibrated by determining the 180°
on-resonance pulse time for13C, and are expressed as the
reciprocal of the 360° pulse time in units of hertz. A total of 16
calibrations over a range from 11.5 kHz down to 1.9 kHz were
made at each of 1dB increments of coarse attenuator by vary-
ing the RF amplitude and length of a single 90°13C pulse in a
DEPT-HMQC sequence to obtain a 180° null. It was ascer-
tained that the same calibration could be obtained (with less
accuracy) by changing the 180°13C pulse in the spin-echo
difference sequence to 360° to obtain aS/N null. Decoupling
measurements were made withRFmax determined by these
1-dB settings and the RF calibration was checked at at least one
of these settings before and after each group of measurements.
Matched values ofTp giving the best decoupling performance
as a function ofbwdth/(RFmax)

2 in Eqs. [3], [7], or [8], were
rounded to the nearest 0.1 ms.

RF inhomogeneity of single1H and13C pulses for the NMR
probe is characterized by aS/N loss of 24% when a 90°1H
pulse is increased to 810°, and a loss of 33% when a13C u
pulse is set at 720° in a1H-detected experiment which yields
zero signal whenu 5 90°—the sensitive volume in the sample
relevant to the decoupling measurements is determined by the

product of the sensitive volumes from each of the three pulses
in the preparatory spin-echo sequence, so the effect of RF
inhomogeneity is much reduced compared to these figures.

Sideband amplitudes were measured atbwdthvalues of 10,
50, and 100 kHz with the sech/tanh pulses digitized in 250
increments for 10 kHz, and 500 increments for the 50 and 100
kHz settings. In each spectrum the peak heights of the center-
band and the four major sidebands at 1/(mTp), m 5 1, 2, 5,
10, were measured after baseline correction using a spline fit
(standard Varian NMR software). The largest sideband ampli-
tude, divided by the centerband amplitude,CB, was recorded
as the relativeMSBamplitude (i.e., as a relative percentage of
CB). For on-resonance measurements, eight transients were
acquired for each spectrum.

For off-resonance decoupling two transients were acquired
for each spectrum. Forbwdthvalues of 10 and 50 kHz, spectra
were obtained at frequency offsets incremented by 100 Hz
from zero offset tobwdth/ 2. For bwdth 5 100 kHz, the
increments were 200 Hz. It was determined by experimentation
that the effective bandwidth of decoupling at the same average
RF power was maximized by setting the truncation factor,b, of
the constituent sech/tanh pulses to 3.1 atbwdth5 10 kHz, 4.3
at bwdth5 50 kHz, and 5.0 atbwdth5 100 kHz. The same
average power was maintained by varying the fine RF power
linear attenuator in proportion to (b/5.3)0.5 while maintaining
the coarse RF power attenuator at the value calibrated for
RFmax. Measurements of centerband linewidth at half height
were made atbwdth5 50 kHz,Jo 5 223 Hz,b 5 5.3,RFmax

5 6.2 kHz,Tp 5 1.3 ms in increments of 500 Hz from zero
offset. Two transients with an acquisition time of 2 s were
obtained for each spectrum subsequent to two dummy tran-
sients, and a minimum delay of one minute was included
between each measurement—without this delay, additional
line broadening from sample heating occurred after about ten
measurements.

The computer simulations were obtained for the case of a
single carbon coupled to a single proton detected on resonance
using a standard density matrix calculation of the detected
signal, as outlined in Ref. (16). The Bloch equations were
solved as a function of time using a fourth-order Runge–Kutta
algorithm with adaptive stepsize control for the sech/tanh driv-
ing functions of Eqs. [1]–[2] and the STUD1 phase cycle, with
DH modified to include the coupling offsets6Jo/2. The total
resonance offset is thusDH(t) 6 Jo/2, depending on whether
the attached spins are aligned with the6z axis. The Euler
angles of the rotated coordinate axes were determined for
offset (s 1 Jo/bwdth) as a function of time and used to derive
the equivalent single rotation in SU(2) at each time. The
procedure was repeated for offset (s 2 Jo/bwdth) and the
parameters of the equivalent rotations were used to construct
the time-domain signal given by Eq. [60] in Ref. (16), which
was Fourier transformed to determine centerband and sideband
amplitudes. Alternatively, the acquisition time can be divided
into subintervals of equal length, sufficiently small to ensure
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the Hamiltonian, and, hence, the time evolution operator, is
effectively constant during each subinterval. The SU(2) param-
eters at each time are obtained directly by concatenating the
appropriate sequence of successive evolution operators. Ap-
proximately 85,000 spectra were simulated and analyzed with
the results summarized in Figs. 1–5. The accuracy of the
simulations has been demonstrated previously (3) by the cor-
respondence between them, vector model calculations, and
experiment. The simulated signals in Fig. 2 were generated
using only eight samples per inversion pulse, resulting in a
slight underestimate of theMSB for some points, but this does
not affect the conclusions for Fig. 2. Peak heights in the
simulations are accurately rendered for sampling rates greater
than 16 per inversion, and all other simulations were performed
using 64 samples per inversion pulse.

These simulations, further described in the captions to Figs. 1
and 5, produce absolute (ABS) MSBand centerband amplitudes,
and relative (REL) MSBamplitudes are given byREL5 ABS/CB.
A plot of absoluteMSBamplitudes versus relativeMSBampli-
tudes for the minimumMSBvalues (at matchedTp andbwdth/
(RFmax)

2 values given by Eq. [3]) obtained from simulations of

on-resonance decoupling yields the relationABS5 0.98*REL2
0.047*REL2 (R2 5 0.99997) where bothABSand REL are in
percent. This relationship was used to convert the relative exper-
imental measurements to absolute prior to plotting in Figs. 2 and
4. Similarly, the minimumMSB and correspondingCB deter-
mined by simulations off resonance yieldsABS5 0.98*REL 2
0.040*REL2 (R2 5 0.99995). This was used to convert the Fig. 8
experimental data to absolute measurements.

Both simulated and experimental data were curve fitted using
KaleidaGraph (Abelbeck Software). This procedure used a Lev-
enberg–Marquardt non-linear least squares algorithm which min-
imizesx2. The goodness-of-fit is listed asR2 which is the square
of Pearson’sr and is related tox2 by R2 5 1 2 x2/(¥ { yi 2 ym} 2)
whereyi 5 actual value, andym 5 mean of actual values.

CALIBRATION CURVE FOR ON-RESONANCE (s 5 0)
STUD1 DECOUPLING

The primary optimization strategy for broadband decoupling
is to minimize sample heating (RF power) for a chosen level of
decoupling performance (bwdth andMSB), or, equivalently,
to minimize theMSBat constantbwdthandRFmax. The major
goal is to obtain a master calibration curve which corresponds
to these optimum conditions and provides values ofTp and
RFmax for any chosen set ofbwdth, MSB, andJo.

Part of this task was achieved in Ref. (2), where we showed
experimentally and theoretically for STUD that for anybwdth
value between 10 and 100 kHz, the same dependence ofMSB
on bwdth/(RFmax)

2 is obtained at constantTp, with separate
curves obtained at differentTp values. The same behavior is
obtained for STUD1, and with coherence sidebands now
understood and eliminated, there is a close agreement between
MSB levels at the same value ofbwdth/(RFmax)

2 at constant
Tp for all bandwidths in the range we are currently most
interested in, 10 to 100 kHz. This universal dependence on
bwdth/(RFmax)

2 is shown by other adiabatic schemes, and will
remain a constant feature throughout this paper, so this term
has been abbreviated tob/RF2.

Simulations ofMSBlevels versusb/RF2 at constantTp for the
on-resonance case (s 5 0) are shown in Fig. 1 for a coupling
constantJ0 5 150 Hz. These have the same form as the
experimental curves of Ref. (2), which were obtained over the
full decoupled bandwidth. Both sets of curves show that, at any
value ofb/RF2, there is a corresponding value ofTp which gives
a minimum MSB value indicated by the points where the
individual curves touch the underlying envelope illustrated in
Fig. 1. For example, atTp 5 1.0 ms, a minimumMSB on
resonance of;0.5% is achieved atb/RF2 ' 1.0 for J0 5 150
Hz, and both shorter and longer values ofTp increase theMSB
levels relative to the envelope. Plots ofMSB versusTp at
incrementedb/RF2 will pass through minima corresponding to
the same points and can be used to determine the relation
betweenTp andb/RF2 that gives the most efficient decoupling.
A later figure for off-resonance decoupling, Fig. 5, is illustra-

FIG. 1. Simulations of STUD1 decoupling on resonance (s 5 0) at
constantbwdth 5 50 kHz andJo 5 150 Hz were performed as functions of
the experimental input parametersTp and the ratiob/RF2 5 bwdth/(RFmax)

2.
Tp was varied over the range 0.1–3.0 ms in increments of 0.1 ms, whileb/RF2

was similarly incremented by 0.1 kHz21 over the range 0.1–3.0 kHz21. Results
for the amplitude of the maximum sideband (MSB) are plotted as a function
of b/RF2 for a subset of the thirtyTp values in increments of 0.5 ms.MSB
amplitudes are expressed as a percentage of the centerband (CB) amplitude.
Similar results are obtained forbwdth in the range 20–100 kHz, since, as
shown in Ref. (2), MSB at a givenTp depends onb/RF2 and is relatively
insensitive to the particular value ofbwdth. The underlying envelope of the
curves shows that for a given value ofb/RF2, there is a corresponding value for
Tp that minimizes theMSBamplitude and yields the most efficient decoupling.
This is illustrated further in an alternative plot ofMSBas a function ofTp for
fixed b/RF2 in Fig. 5, where the simulations are performed over the full
decoupled bandwidth.
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tive of this procedure, although the minima obtained off reso-
nance are broader and exhibit more irregularities than the
minima obtained on resonance.

The minimum MSB was obtained as a function ofTp,
which was varied between 0.1 and 3.0 ms for eachb/RF2 in
the range 0.1 to 3.0 kHz21 using computer simulations at
bwdthvalues of 20, 50, and 100 kHz. Since the experimental
dependence ofMSBon b/RF2 has been shown to be insensi-
tive to bwdth(2), the minimumMSBas a function ofTp for
fixed b/RF2 occurred at the same value ofTp (60.1 ms) for
each of these threebwdth values, as expected. Figure 2

shows the calibration curve obtained, by averaging the three
sets of results, for the minimumMSBplotted as functions of
the matched values,b/RF2 andTp, that give the most efficient
decoupling performance under on-resonance conditions.
Good agreement was obtained with experiment, as is also
shown in the figure. ExperimentalMSBlevels obtained with
unmatchedb/RF2 andTp were found to be displaced from the
curve of optimal performance by increasing amounts as the
difference betweenTp and its optimal value for a givenb/RF2

was increased, in accordance with the theoretical curves
illustrated in Fig. 1. The relationship betweenTp (ms) and

FIG. 2. Matched values ofb/RF2 andTp that produce the minimumMSBand the maximum centerband amplitude (CB) were determined from the simulations
illustrated in Fig. 1. The maximumCB (open squares, left axis) and minimumMSB(open circles, right axis) are plotted as functions of the matched pairs,b/RF2

(bottom axis) andTp (top axis), for STUD1 decoupling applied on resonance (s 5 0) for Jo 5 150 Hz. The unfilled points are the average of computer
simulations of minimumMSB and corresponding maximumCB levels atbwdth values of 20, 50, and 100 kHz. TheTp andb/RF2 axes are related by Eq. [3].
The solid curve fitted to the simulatedMSBdata is a simple parabola (vertex at the origin) corresponding to Eq. [5] (R2 5 0.9990), and thealternative dashed
curve is a parabola (vertex is shifted from the origin) given byMSB 5 20.085Tp 1 0.70Tp

2 (R2 5 0.9996). Theparabolic curve fitted to the simulated
centerband (CB) data isCB 5 100 2 4.3Tp

2 (R2 5 0.997)and, as noted in the text, theCB data is related to theMSB data byCB 5 100 2 6.57*MSB.
SimulatedMSBresults (not shown) were also plotted forbwdth5 10 kHz and fitted to a second shifted parabola asMSB5 20.21Tp 1 0.76Tp

2 (R2 5 0.996).
The experimentalMSBdata (solid points) were obtained with a13CH3I sample (Jo 5 150 Hz) and on-resonance STUD1 decoupling, at matched values ofb/RF2

andTp given by Eq. [3] and atbwdthvalues of 10, 50, and 100 kHz. The experimental data were measured relative to the centerband and have been converted
to absolute percentages as described under Experimental.
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b/RF2 (kHz21) for most efficient decoupling, as determined
from the simulations, is

Tp 5 ~1.112 0.11b/RF2!~b/RF2!, [3]

and both theTp andb/RF2 scales are provided in Fig. 2.
It was of interest to investigate whether this calibration

curve could be related back to the vector model of Ref. (3).
In that study it was shown that in the limit of high RF
decoupling power (b/RF2 # 0.5 kHz21), theMSBoccurred at
1/Tp, with smaller harmonics atn/Tp, and analytical expres-
sions giving the amplitude of these sidebands were derived.
A rough estimate of the 1/Tp sideband is given by 0.25[12
cos(pJ#Tp/2)], which is half the maximum amplitude of the
modulation of the S-spin FID in the limit of high RF power.
This maximum occurs at the middle of each sech/tanh
decoupling pulse andJ# is the average coupling constant
during half a sech/tanh pulse. Figure 3 shows a plot of the
averageMSB results obtained from the computer simula-
tions shown in Fig. 2 versus 0.25[12 cos(pJ#Tp/2)] for
bwdth5 50 kHz.J# was calculated as described in the Fig. 3
legend. The plot is a straight line of unit slope and zero
intercept, illustrating a strong correlation between the opti-
mal performance values determined from simulation and
experiment, and the ideal performance that can be obtained
in the high-power limit. However, the slope of unity is

serendipitous. In Ref. (3) it was demonstrated that the 1/Tp

sideband is given by the Fourier transform of the vector-
model S-spin signal, cos(pJoa(t)Tp/2), wherea(t) is an an-
alytical expression depending onRFmax, b, Tp, and bwdth.
This exact result for the amplitude of the 1/Tp sideband at
b/RF2 5 0.1 kHz21 is less than the estimate given by
0.25[12 cos(pJ#Tp/2)] by a factork1 5 0.73, andthis factor
is constant for allTp in the range 0.1 to 3 ms. As described
earlier in the discussion pertaining to Fig. 1, the most
efficient decoupling conditions for a givenTp occur at
values of b/RF2 where the individual curve intersects the
envelope of the curves. Here, theMSB is some small factor
k2 greater than the 1/Tp sideband produced in the high power
limit at lower values ofb/RF2. This occurs at points where the
1/(5Tp) sideband (or another 1/(mTp) sideband wherem . 2)
has increased until it exceeds the 1/Tp sideband by the same
k2 factor. A comparsion of minimum MSB values for a
given b/RF2, plotted in Fig. 2, with the corresponding high-
power limit values for MSB at the sameTp in Fig. 1 show
that k2 5 1.37 sothat k1k2 ' 1.

This correspondence with the vector model is useful in
several ways. First, it again justifies the utility of the model as
one which describes decoupling in the high power limit and we
then attempt to mimic this ideal case by using phase cycling
schemes.

Second, for on-resonance conditions at least, it provides an easy
means via the function, 0.25[12 cos(pJ#Tp/2)], of determining the
MSBfor most efficient decoupling at a particularTp.

Third, except for a weak dependence ofJ# on bwdth and
RFmax, these latter parameters are not included in the function,
0.25[1 2 cos(pJ#Tp/2)], and this implies they do not signifi-
cantly affect the quality of decoupling once the matched con-
ditions imposed by Eq. [3] are realised.J# , the average coupling
constant during half a sech/tanh pulse, can be calculated as
described in Refs. (3) or (8). It ranges modestly as0.88Jo,
0.91Jo, and 0.95Jo for bwdth values of 10, 20, and 100 kHz
at b/RF2 5 0.5 kHz21 to just 0.94Jo, 0.95Jo, and 0.98Jo,
respectively atb/RF2 5 2.5 kHz21. There is a corresponding
minor divergence of the simulatedMSB amplitudes for
bwdth 5 10 kHz away from the averaged simulated data for
bwdthvalues of 20, 50, and 100 kHz, which increases at lower
b/RF2, as illustrated by the two shifted-parabola fits to the data
shown in Fig. 2. The experimental results in the Figs. 2, 4, and
8 also indicate slightly lowerMSBvalues for a 10-kHz band-
width.

Fourth, ignoring the weak dependence ofJ# on bwdth and
RFmax, since (12 cosx) is proportional tox2 for small x,

MSB5 0.25k1k2@1 2 cos~pJ#Tp/ 2!# 5 k3Tp
2. [4]

This justifies the excellent fit of the experimental and simulated
data to the solid curve in Fig. 2, which is a simple parabola
(vertex at the origin) given by

FIG. 3. Simulated minimumMSB amplitudes expressed as a percentage
of the centerband amplitude, calculated as described in the legend to Fig. 2
(averaged forbwdth values of 20, 50, and 100 kHz), are plotted against the
function 0.25[12 cos(pJ#Tp/2)] (for bwdth5 50 kHz, and also expressed as
a percentage), whereJ# is the average coupling constant during half a sech/tanh
pulse calculated as described in Refs. (3) or (8) at theb/RF2 values used in the
simulations. The data points fit a straight line through the origin with slope5
1.014 (R2 5 0.9994).
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MSB5 0.654Tp
2, [5]

where MSB is in percent of the centerband, andTp is in
milliseconds. The simulated sidebands and experimental points
plotted in Fig. 2 demonstrate a slight tendency towards a
general quadratic (parabola with vertex shifted from the ori-
gin), rather than Eq. [5], resulting from the approximations
implicit in the above discussion. In addition the experimental
points at highb/RF2 show a small displacement towards higher
MSB than the simulated results, which we ascribe to experi-
mental artifact or error. These deviations are small and ulti-
mately cannot be seen in the off-resonance results discussed in
the next section.

Fifth, the centerband amplitude is proportional to the ampli-

tude of the S-spin FID with the decoupling modulation sub-
tracted. Since 0.25[12 cos(pJ#Tp/2)] is half the maximum
amplitude of the modulation of the S-spin FID in the limit of
ideal decoupling at lowb/RF2, under those conditions the de-
crease in the centerband is proportional to this function. This is
confirmed by the linear relation between theMSBandCB data
at high RF power which can be derived from the vector-model
results in Ref. (3). We now find that the form of these relations
extends to the data at lower RF power or higherbwdth in Fig.
2. There is a close linear correspondence between simulated
MSB and CB, with CB (%) decreasing as a function of
increasingMSB (%) according to the relation 1002 CB 5
6.57*MSB (R2 5 0.998), and the fit of theCB data, an
inverted parabola compared to theMSB data, is illustrated in

FIG. 4. Similar to Fig. 2, but the effect of changing the coupling constant is considered. Experimental values of minimumMSB measured using a
13CH3CO2Na (Jo 5 127 Hz) sample and a H13CO2H ( Jo 5 223 Hz) ester sample, as a result of on-resonance STUD1 decoupling at matched values ofb/RF2

andTp from Fig. 2 and atbwdthvalues of 10, 50, and 100 kHz, are plotted againstJoTp andJob/RF2. The top and bottom axes are related by Eq. [3] and have
been rescaled byJo according to the discussion surrounding Eq. [6]. Thex-axes are dimensionless. The solid curve, which is fitted to simulatedMSBdata (not
shown), is the same as the solid curve in Fig. 2, illustrating there is a simple relationship that determines the optimal choice ofb/RF2 andTp and minimizes the
MSB (i.e., most efficient decoupling) for on-resonance STUD1 decoupling over a range ofJ0 values appropriate to13C1Hn systems. Extensions to the full
decoupled bandwidth of STUD1 are considered in subsequent figures.
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the figure. This numerical correspondence betweenCB and
MSB supports our emphasis on quantifyingMSB levels to
provide an accurate measure of decoupling performance.

Sixth, J# 5 Joa(Tp/2) in Eq. [4] indicates how decoupling
performance might be related toJo. Again ignoring the weak
dependence ofJ# on bwdthandRFmax, the function, 0.25[12
cos(pJ#Tp/2)], is also proportional toJo

2, since the argument of
the cosine is small. Thus differentJo values might be accom-
modated by rescaling the dependentMSB axis of the calibra-
tion curve by (Jo/150)2, or by converting thex-axis to either
Job/RF2 or JoTp as in Fig. 4, and one can write

MSB5 k~ JoTp!
2 5 29.1~ JoTp!

2, [6]

whereMSBis in percent of the centerband,Jo is in Hz, andTp is
in seconds, givingk3 5 k(150/1000)2 in Eq. [4]. The experimental
results forJo 5 127 and 223 Hz in Fig. 4 show the same minor
tendency (as in Fig. 2) towards a shifted parabola rather than the
simple parabolic curve of Eqs. [4]–[6] resulting from higher order
terms in the expansion of the cosine. However, the overall excel-
lent correspondence between this simple theory and experiment
indicates that we can relate theMSBandCB, for on-resonance
sech/tanh decoupling at the most efficient RF power, back to the
function 0.25k1k2[1 2 cos(pJ#Tp/2)] for a range ofJo values
appropriate to13C1Hn systems.

We conclude that the single calibration curve forMSB
amplitude, and the associated curve for centerband amplitude,
in Figs. 2 or 4, suffice to provide values of the parameters
RFmax and Tp for any chosen values ofbwdth and Jo for
STUD1 13C decoupling under the most efficient conditions on
resonance. Individual experimental data points correspond to
the analytical expressions derived from computer simulations
and basic theory (the vector model) and thus prove these
equations without any inherent subjectivity. We next proceed
to demonstrate the more general validity of this analysis for
off-resonance decoupling, but the determination of effective
bandwidths is wholly experimental and thus partly subjective.

MASTER CALIBRATION CURVES
FOR STUD1 DECOUPLING

The vector model of adiabatic decoupling (3) demonstrates
that for ideal decoupling (e.g.,b/RF2 # 0.5Tp), the MSB on
resonance was the 1/Tp sideband. The harmonics atn/Tp are
smaller and higher-order sidebands at 1/(mTp) are zero under
ideal adiabatic conditions on resonance. The 1/(mTp) side-
bands remain less than the 1/Tp sideband far off resonance, but
for I spins having frequencies near the extremes of the fre-
quency sweep (s ' 61) the adiabatic condition is violated and
one or more of the 1/(mTp) sidebands rapidly increases above
the level of the on-resonance 1/Tp sideband as the limits,s 5
61, are approached. Thus, in terms of sidebands, for sech/tanh
decoupling, there is a region of flat response across a large
fraction ofbwdthand this matches a near constant centerband

amplitude. Accordingly, a good definition of the effective
bandwidth in the high power limit is the fraction ofbwdth
within which theMSB is the on-resonance 1/Tp sideband.

The on-resonance simulations and experiments at lower
power, as described in the previous section, show that the most
efficient conditions, in terms of minimumMSB at a given
average power, occur when one of the 1/(mTp) sidebands has
grown to be 37% larger than the 1/Tp sideband (k2 5 1.37 in
Eq. [4]). The next question is whether this latter result at most
efficient power can be extended off resonance in the same way
the simple rules for high-power decoupling were applicable off
resonance. Given the relatively constant values ofMSB as a
function of decoupler resonance offset for the sech/tanh func-
tions, we might expect this to be the case within limits deter-
mined by someMSB criterion that we choose to apply.

Matched Values of Tp and bwdth/(RFmax)
2

Theoretical simulations were conducted for a range of de-
coupler offsets given by 0# usu # 0.92 in s increments of
0.01 over the same range of variation inb/RF2 andTp described
earlier. The large number of small increments, required to
provide confidence that regions of highMSB amplitude were
not missed, was computationally intensive, so only a single
bwdth value of 50 kHz atJo 5 150 Hz was used for the
off-resonance simulations. The results for theMSB in this
offset range are plotted in Fig. 5 as a function ofTp for fixed
values ofb/RF2. Only a subset of curves forb/RF2 incremented
by 0.5 kHz21 are displayed for clarity in the figure.

For the on-resonance case, theMSB minima were well
enough defined to readily provide the most efficientTp value
within 0.1 ms, yielding Eq. [3]. But the curves in Fig. 5 are
broader near the minimumMSB than for the on-resonance
case, with theTp value corresponding to the lowestMSB
shifting somewhat erratically from one curve at fixedb/RF2 to
the next. One approach is to assume that the variations across
the relatively broad minima will change withbwdth, and that
the overall centers of the broad minima represent the best
estimates of the most efficient decoupling conditions. Repeti-
tion of the simulations at severalbwdthvalues (and averaging
the results), as for the on-resonance procedure, would be un-
necessarily time consuming so these centers were estimated as
the midpoint between points on the outside wings of the broad
minima where theMSB level had risen 7% or more above the
lowestMSBfor eachb/RF2 value. A plot ofTp (ms) matched to
b/RF2 (kHz21) in this way provided the curve (R2 5 0.992)

Tp 5 ~1.402 0.17b/RF2!~b/RF2!. [7]

A replot of theMSB amplitude for the matched conditions of
Eq. [7] versus the estimate of the 1/Tp sideband given by the
function, 0.25[12 cos(pJ#Tp/2)], yielded a reasonably straight
line (R2 5 0.992; slope5 1), and so the calibration curve
could be represented by a simple parabola, as for the on-
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resonance case. Very good agreement was obtained between
theory and experiment for these matchedTp andb/RF2 condi-
tions, similar to the on-resonance results in Fig. 2.

Our investigative plan as expressed above was to first con-
centrate on the region of flat response across a large fraction of
bwdth (0 # usu # 0.92) as inFig. 5, and then optimize the
effective bandwidth. Because the simulated data of Fig. 5 will
sustain a range of equations differing from Eq. [7], it is
possible that the region of flat response might be extended by
some other match betweenTp andb/RF2. Accordingly,Tp was
incremented in steps of 0.1 ms for five different values ofb/RF2

for each of bwdth 5 10, 50, and 100 kHz. Via direct
experimental comparisons,MSB levels decreased by up to
20% at the edge of the bandwidth, or remained the same, when
Tp was changed from the value given by Eq. [7] to

Tp 5 b/RF2. [8]

Across the normal range ofTp, Eq. [8] does not differ greatly
from Eq. [7], as shown in Fig. 5, and increases in the effective
bandwidth were only a maximum of 3% forbwdth5 50 kHz,
and even more modest at 10 kHz and 100 kHz. But however
small the gains, Eq. [8] has the advantage and the additional
complexity of Eq. [7] cannot be justified.

Effective Bandwidth (bweff)

The experimental estimation of the limit ofbweff is initially
partly subjective. In some cases, with increasingusu, theMSB
amplitude increases rapidly and smoothly at the edge of the
bandwidth and there is little difference between determining
the limit as the point where theMSB had increased 10%, or
increased 20%. In other cases theMSB rises 10–20% near the
edge of the effective bandwidth before decreasing and then
increasing more rapidly. Thus the choice of whether a 10% or
a 20% increase is acceptable becomes more critical. But an

FIG. 5. Simulations were performed for the same experimental input parameters and over the same range of variation inb/RF2 andTp as described in the
legend to Fig. 1, except theMSB level was determined over a frequency offset range of 0# s # 0.92, incrementings by 0.01 (forb/RF2 5 0.5 kHz21, 0 #

s # 0.90 toaccurately reflect the decrease in effective decoupled bandwidth at lower values ofbwdth). SimulatedMSB amplitudes are plotted as a function
of Tp for a subset of the 30b/RF2 values in increments of 0.5 kHz21. Individual simulated values ofMSB for fixed b/RF2 (not shown) have been connected by
interpolating curve fits. The unfilled points correspond toMSBlevels at the midpoint of the relatively broad neighborhood surrounding the minimumMSB. These
matched values ofTp andb/RF2 are given by Eq. [7]. The filled points (and solid curve) representMSB levels for matched values given by the simpler relation
Tp 5 b/RF2, which leads to slight improvements in the effective decoupled bandwidth in some cases and is therefore preferred to Eq. [7]. Details are provided
in the text.
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objective procedure is not as simple as allowing, say, an
increase of 10%, because the question immediately arises as to
what constitutes the base sideband level against which the
increase should be compared. For example, if the base level is
chosen to be theMSBamplitude across 90% of thebweff, this
base number will vary erratically by a few percent as demon-
strated by the simulations in Fig. 5, and so the “objective”
standard will also be erratic. Considering that our overall goal
was to fit a large number of experimental points to smooth
calibration curves it was decided that this source of variance
would eventually be averaged out by the scatter of points either
side of the final curve. Generally a temporary rise of up to 20%
in MSB near the edge of the effective bandwidth was consid-
ered acceptable, but in cases where theMSB showed a con-
tinuous rapid increase, the limit was set at 15% above the
preceding flat region.

As mentioned above, another variable that can have a
small but worthwhile effect is the point at which the sech
and tanh sweeps are truncated, traditionally set at a 1%
cutoff where sech21(0.01) 5 5.3. Experimental determina-
tion of bweff by increasing the truncation level, i.e., decreas-
ing theb factor of 5.3, has a beneficial effect at lowerbwdth
values. At bwdth 5 10 kHz, the effective bandwidth is
increased by up to 6% ofbwdthwhen the truncation cutoff
is increased to 9%. These measurements were made at
constant average RF power by multiplying the value of
RFmax used forb 5 5.3 by (b/5.3)0.5, whereb is the new
truncation factor. A calibration curve of truncation level
versus (bwdth)21 is provided in Fig. 6. This optimization of
sech/tanh truncation leads to modest improvements inbweff

at low bandwidths, but does not change the overallMSB
amplitude. Thus, the experimental points shown later in Fig.
8 were obtained with optimized truncation factors, but are
plotted at the equivalentb/RF2 value whereRFmax corre-
sponds to the traditionalb factor of 5.3, so that we can
continue to employ a common calibration curve for all
bwdthvalues. Alternatively, to avoid any confusion, a scale
for bwdth divided by (average power) is also provided in
Fig. 8.

Plots of effective bandwidth, expressed as a fraction in
percent,fs, of bwdth, versusbwdth, obtained using the opti-
mized truncation factors of Fig. 6, are shown in Fig. 7. These
differ from the previous Fig. 7 of Ref. (2) to show minor
dependencies on the chosenMSB level, and onJo, which were
revealed by the present more detailed study. All data sets can
be easily fitted to smooth curves by observing that there is a
linear relationship betweenbweff andbwdth. Expressing this
in an inverse manner withbweff as the independent variable, to
permit the calculation ofbwdth from a chosen effective band-
width,

bwdth5 m1 1 m2bweff. [9]

The intercepts,m1, and slopes,m2, are listed in Fig. 7. Plots of

these straight lines are very similar and do not readily convey
the dependence on chosenMSB and Jo. These minor differ-
ences are magnified by the plots in Fig. 7 where

fs 5 100bweff/bwdth5 100~1 2 m1/bwdth!/m2. [10]

The linear relationships expressed in Eq. [9] were not antic-
ipated in Ref. (2). While it might be argued that a three-point
data set is too small to permit a definitive conclusion of
linearity, there are five such data sets in Fig. 7 and each set
yielded a goodness-of-fitR2 value greater than 0.99997. Data
points at otherbwdth values can be obtained, but each is the
result of the analysis of at least 150 spectra, and the accuracy
of the results in Fig. 7 is sufficient for the calibration of
decoupling parameters for routine application.

In the prior study (Fig. 7 of Ref. (2)), we obtained a smooth
curve to fit the experimental data by relatingbweff to the
effective bandwidth for inversion by a single sech/tanh pulse.
The new procedure encapsulated by Eqs. [9] and [10] is sim-
pler and more direct. The two approaches are reconciled by
observing that the effective bandwidth for inversion is also
governed by Eqs. [9] or [10]. This can be rapidly established
with a very high degree of accuracy, because for a single pulse
it is easy to generate inversion profiles (in the absence ofJ
coupling and at constantb/RF2 5 Tp) by Bloch-equation cal-
culations, and obtain many simulated data points at different
bwdthvalues. For largebwdth, sech/tanh pulses yield, almost
ideal, square inversion profiles, with a slight rounding of the

FIG. 6. Experimentally determined optimum truncation levels (TL), for
the hyperbolic secant amplitude modulation function plotted against reciprocal
bwdth, which provide maximum effective bandwidths for STUD1 decoupling
when using a13CH3I sample (Jo 5 150 Hz). The standard for determining the
effective decoupled bandwidth is discussed in detail underEffective Band-
width. The data have been fitted to a curve given by TL5 23.5(1 1
0.161bwdth)21 (R 5 0.9997). Thetruncation level is related to the truncation
factor, b, by TL 5 100 sechb.
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corners, as illustrated by Fig. 8 of Ref. (8). The effective
bandwidth for inversion can be defined by a chosen percentage
inversion limit on the profile shoulder. The simulations show
that for a constantb truncation factor and a constant inversion
limit, bweff andbwdthare related by Eq. [9] withm2 5 1. We
have noted (2) that the adiabatic condition is proportional to
(b/RF2)/Tp so maintenance of a constant ratio betweenb/RF2 and
Tp as in Eq. [8] should maintain some commonality for differ-
ent bwdth values, especially at the middle of inversion pro-
files. This adiabatic condition also suggests that the squareness
of inversion profiles should scale with the dimensionless offset
parameter,s, and so reducem2 below unity. But the detailed
Bloch calculations prove via the relation,bwdth 5 m1 1
bweff, that the reduction in squareness is manifested inm1 and

so the profiles get worse for lowerbwdth. Thus the shoulders
of the inversion profile always have the same shape in terms of
absolute frequency units, not dimensionlesss, under these
conditions. This observation, and Eq. [9], no longer apply
whenbwdth is so small that the two mirror-image shoulders
begin to meet in the middle of the overall profile, i.e., when
bwdth is about 2m1 or less.

Inclusion of ab truncation factor that varies withbwdth(as
determined in Fig. 6) in the inversion calculations, changesm2

from unity to values of the same order as those listed for
decoupling in Fig. 7. This variable truncation factor decreases
the intercept,m1, which dominates at lowbwdth, so increasing
bweff at low bwdth while having a negligible effect at high
bwdth. Thus all aspects of the shape of the decoupling profile

FIG. 7. The ratiofs (of bweff in percent ofbwdth) plotted versusbwdth.Effective bandwidths,bweff, were measured at a choice of three differentMSBlevels
of 2.5, 1.5, and 0.5% for three different coupling constants of 127, 150, and 223 Hz exhibited by the chemicals13CH3CO2Na, 13CH3I, and H13CO2H (ester).
A set of three experimental points was obtained atbwdthvalues of 10, 50, and 100 kHz for each chosen combination ofMSB andJo. Each set of points was
fitted to the equationfs 5 100(1 2 m1/bwdth)/m2, which is equivalent tobwdth 5 m1 1 m2bweff, and the intercepts,m1, and slopes,m2, of these linear
relations are listed in the figure. In each caseR2 $ 0.99997,indicating the sufficiency of the three-point data sets. Them1 andm2 values can in turn be fitted
to straight lines asm1 5 1.3 1 0.8/MSB (R2 5 0.996) andm2 5 1.0051 0.008/MSB (R2 5 0.989) forJo 5 150 Hz; andm1 5 1.7 1 0.8/MSB (R2

5 0.97) andm2 5 1.0121 0.006/MSB (R2 5 0.98) for Jo 5 223 Hz. To simplify Eq. [18] for determining the experimental input parameterbwdth for
a desiredMSBandbweff at a couplingJo, this last relation form2 was modified tom2 5 1.0101 0.008/MSB(R2 5 0.92)—this change is within experimental
error and has a trivial effect on thebwdth estimates derived from Eq. [18].
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would seem to correlate well with the profile for a single
sech/tanh inversion pulse, which accounts for the advantage
this pulse enjoys over other adiabatic pulses used for decou-
pling. Our overall study is limited tobwdth$ 10 kHz to avoid
the additional complexity that arises whenbwdth is of the
same order as 2m1. However, we do not find an exact corre-
lation between decoupling and inversion probably becauseJo

coupling has not been included in the latter. We observe closer
correlation, between them1 andm2 values in Fig. 7 and those
from inversion calculations, ifJo is added to them1 values for
the latter. However the experimental decoupling data are both
insufficient in number and accuracy to support a definitive
conclusion as to this minor effect ofJo on the squareness of the
profile shoulders. A precise description of the effect requires a
full quantum mechanical calculation but is of such low signif-
icance to broadband decoupling that there is little to gain for
the present study. Note that most of the increase inm1 with
increasingJo in Fig. 7 derives from Eq. [11] below, rather than
this small effect ofJo on the shape of the inversion profile.
IncreasedJo requires smallerTp for the sameMSB level, and
reducingTp (andb/RF2) reduces the squareness of the profile for
both inversion and decoupling.

In comparing effective bandwidths for decoupling to inver-
sion profiles for single pulses, it is of interest that, for example,
for the (1.5%, 150 Hz) data set in Fig. 7, a single pulse inverts
Iz magnetization to 0.7I2z at the center of the profile. This
gives an example of the extent to which the STUD1 phase
cycle must correct for these poor inversions, so that the average
amount of Iz and I2z after each pulse equalizes cyclically
during the decoupling scheme.

The data in Fig. 7 demonstrate the small extent to which the
effective bandwidth can be improved by using some other form
of adiabatic pulse, or some other phase cycle. The only real
scope for improvement is the frequency-independent square-
ness of the inversion profile, i.e., reduction of them1 value of
about 2 kHz. This will be important in narrowband applications
where selectivity is the prime criterion, not average RF power,
and alterations to the form of the adiabatic pulse should im-
prove the profile just as we were able to gain modest improve-
ments atbwdth5 10 kHz by altering the truncation factor for
the sech/tanh pulse.

Experimental Data and the Master Calibration Curve

The overall results are brought together in the optimized
master curve data of Fig. 8 which providesMSB levels across
the effective bandwidths displayed in Fig. 7 (up to 98% of
bwdth) for bwdth values between 10 and 100 kHz, andJo

between 125 and 225 Hz. The experimental points fit well to a
simple parabola (vertex at the origin), which in turn can be
related back to the on-resonance Eq. [4] and the function,
0.25[1 2 cos(pJ#Tp/2)], with these relationships summarized
by

MSB5 32.0~ JoTp!
2 5 1.14$25@1 2 cos~pJ#Tp/ 2!#%, @11#

whereMSB is in percent of the centerband,Jo is in Hz, andTp

is in seconds.
As for the on-resonance results,J# in Eq. [11] was calculated

for bwdth 5 50 kHz, which produces anMSB plot approxi-
mately equidistant between slightly displaced plots for
bwdth5 20 and 100 kHz. The experimental measurements in
Fig. 8 again illustrate the modest trend to lowerMSB levels for
bwdth5 10 kHz. There is also a weak trend in Fig. 8 to higher
MSB levels at higherJo values than given by the master curve.
However, the more significant trend is that an increasedJo

results in a smaller effective bandwidth, as discussed in the
preceding section concerning Fig. 7, wherebweff is 6% less for
Jo 5 223 than 127 Hz atbwdth 5 10 kHz, although it is
within a 1% difference atbwdth 5 100 kHz.

While the parabolic fit through the origin in Fig. 8 is very
good (R2 5 0.960), it isclear that a parabola with a small y
intercept is better (R2 5 0.968)even though such a non-zero
intercept has no theoretical justification. The source of this
intercept arises from the unavoidable subjectivity involved
in experimentally determining the effective bandwidth.
From Fig. 7,bweff decreases with decreasingb/RF2 (smaller
MSB) and there is a natural subjective bias towards accept-
ing a higher effective bandwidth and a higher minimum
MSBwhen determining these limits. Clearly the estimates in
both Fig. 7 and Fig. 8 could be reworked, but there can be
little or no gain in terms of practical applications whereMSB
levels below 0.5% would rarely be warranted. In any event,
the present figures with slightly higherMSBandbweff values
at the high power end of the normal RF range are valid
experimental calibrations of efficient decoupling. They
intercept in Fig. 8 serves as a reminder that the curves are
experimental in origin.

A Calibration Curve for Centerband Amplitude

The filled data points in Fig. 5, for whichTp 5 b/RF2, do not
fit a parabolic curve through the origin as well as the experi-
mental data in Fig. 8 because the simulations were obtained
over the constant range of 0# s # 0.92 rather than a range
that increases with increasingb/RF2 as demonstrated by the
experimental data in Fig. 7. The curve forb/RF2 5 0.5 kHz21

was recalculated over 0# s # 0.90 for thepresentation in
Fig. 5 once it was realized thats 5 0.92exceeded the effective
bandwidth for that case, but in general, minimumMSB levels
derived from the simulations over 0# s # 0.92 were a little
high at low b/RF2 and a little low at highb/RF2 with good
correspondence to the experimental measurements for 1#
b/RF2 # 2 kHz21. While the simulations could be repeated to
take into account the increase in effective bandwidth with
b/RF2, no new information would be gained. The demonstration
of a very good fit of the experimental data to a parabola in Fig.
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8, in contrast to the limited simulation data, again is evidence
that subjectivity has largely been avoided.

However, as noted above, the simulations provide absolute

estimates of sidebands and centerbands, whereas accurate ex-
perimental data are restricted to the determination of sideband
amplitudes relative to centerband amplitudes. As for the on-

FIG. 8. Master calibration curve (solid line) for the optimal values of the parameters,RFmax, bwdth, andTp, that produce the minimumMSBat a couplingJo over
an effective decoupled bandwidth,bweff, equal tofs timesbwdthfrom Fig. 7. The set of equations for determining these optimal values is described underPractical 13C
Decoupling Parameters.ExperimentalMSBlevels for STUD1 decoupling across the same effective bandwidths as above are plotted versusJoTp 5 Job/RF2, for the three
coupling constants of 127, 150, and 223 Hz exhibited by the chemicals13CH3CO2Na,13CH3I, and H13CO2H (ester) and values of 10, 50, and 100 kHz forbwdth. The
sech/tanh pulses comprising the STUD1 scheme utilized a variable truncation factor,b, calibrated in Fig. 6, and anRFmax scaled as (b/5.3)0.5 relative to theRFmax at
the traditional value ofb 5 5.3. Thus the value ofb/RF2, represented by the bottom scale ofJoTp 5 Job/RF2, is for the equivalent average power whenb 5 5.3 and the
top scale is related to the bottom scale by average power5 (RFmax)

2/5.3. The master curve, a parabola, is fitted to the experimental points byMSB5 0.081 30.8(JoTp)
2

(R2 5 0.973), and the alternative simple parabola through the origin (dashed curve) is fitted toMSB5 32.0 (JoTp)
2 (R2 5 0.968). The curve for the centerband amplitude

is derived from the solid master curve using Eq. [12]. Thex-axes are dimensionless.
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resonance data in Fig. 2, the computer results (plotted in part in
Fig. 5) show that there is a linear correspondence between
minimum MSB (%) and maximumCB (%) for Tp 5 b/RF2

yielding the relation

1002 CB 5 5.7*MSB. [12]

For low values ofTp 5 b/RF2 the values for both the original
0 # s # 0.92 data and the recalculated 0# s # 0.90 data
fit this equation. Given the exactness of Eq. [12] (R2 5
0.997), and theoverlap with the experimental data for 0.5#
b/RF2 # 2, the associated relation between relative and absolute
measures of sideband amplitudes has been used to convert the
relative experimental data to absolute in the plot ofMSBlevels
in Fig. 8 (see Experimental). In addition, Eq. [12] has been
used to provide a calibration curve in Fig. 8 for the centerband
amplitude derived from the experimentalMSB data.

As mentioned above, one accepted measure of decoupling
efficiency is the amount of residual splitting associated with the
centerband (7, 16). If not resolved, this splitting will be present
as line broadening. A careful study was made at low power,Jo

5 223 Hz, andbwdth 5 50 kHz, corresponding to a center-
band amplitude of 85% on the master curve of Fig. 8 where
residual splitting should be greatest. Four-transient spectra
were obtained with long delays between each spectrum to
ensure that sample heating caused no line broadening. No
resolvable splitting of the centerband was observed at any
frequency offset, including offsets corresponding tofs .
100% where the centerband amplitude rapidly decreases to
zero corresponding to the sharp transition to a completely
coupled spectrum. Indeed, compared to coupled linewidths,
line broadening of only 0.2 to 0.3 Hz was measured across
almost the entire 50 kHz frequency sweep, out tofs # 97%,
which exceeds the effective bandwidth determined in Fig. 7 as
fs 5 91%. This confirms that residual splitting, or line broad-
ening, of the centerband does not accurately reflect adiabatic
decoupling efficiency, and that it is an insignificant effect
compared to normal linewidths.

The Master Curve Compared to Ideal Decoupling

The minimumMSB can be directly compared to the mag-
nitude of the 1/Tp sideband on resonance, determined from
the vector model (3) for Tp5b/RF2 using the function,
cos(pJoa(t)Tp/2), as described above in the On-Resonance
section. This calculation assumes that the I spins remain
aligned with the effective field,Be, at all times so that only
sidebands atn/Tp are generated, which is to say that it is
assumed that the adiabatic condition is not violated. Under
such theoretical conditions the modulation of the S-spin FID is
repeated exactly for every sech/tanh pulse and total sideband
intensity is minimized. Experimentally, single-transient meth-
ods cannot reduce sidebands below values obtained under these
conditions of ideal adiabaticity. The vector model calculations

(for Tp increments of 0.1 ms andJo 5 150 Hz) were fitted (R2

5 0.99994) to asimple parabola (vertex at the origin) yielding

MSB5 24.1~ JoTp!
2 5 0.86$25@1 2 cos~pJ#Tp/ 2!#%. [13]

whereMSB is in percent of the centerband,Jo is in Hz, andTp

is in seconds. This represents the lowest possibleMSB level at
a chosen value ofJoTp and the curve for these theoretical
conditions is plotted as “ideal decoupling” in Fig. 9. The factor
of 0.86 is greater thank1 5 0.73 in theOn-Resonance section
because the latter was for high power conditions (b/RF2 5 0.1
kHz21). Comparing the previous results for STUD to those for
STUD1 and to ideal decoupling indicates that the STUD
sidebands have been reduced by 58%, and only a further
reduction of 11% is possible. But it is arguably more appro-
priate to compare Eq. [13] with the on-resonance result of Eq.
[6], because Eq. [11] includes the nominal 15%MSBtolerance
in experimentally determining the limits of the effective band-
width. This comparison indicates that only a further 4% reduc-
tion is possible beyond the improvement in going from STUD
to STUD1. It is for these reasons that we noted earlier that
there is not much potential gain to be had in improving the
phase cycle over that of STUD1.

However, while an absolute limit can be imposed on the
minimum MSB level achievable at a particularJoTp (albeit
with minor corrections from large changes inJo andbwdth),
the relationship betweenTp and b/RF2, whether from Eq. [3],
[7], or [8], is based entirely on experiment, or computer sim-
ulations to mimic experiment. In determining the optimum
relationship for STUD1 we cannot state absolutely that some
other phase cycle will not be more efficient because we have no
illuminating theory to define the relationship betweenTp and
b/RF2. In these terms, greater efficiency means a largerb/RF2

value for the sameMSBandTp, and thus lower average power
for the samebwdth, MSB, andTp. This is illustrated in Fig. 9
for the experimental on-resonance curve plotted versusJob/RF2

compared to the same curve plotted versusJoTp, demonstrating
that a relationship like Eq. [3] will advantageously alter the
b/RF2 scale relative to theTp scale if it is possible to generate a
phase cycle that would achieve this result across the same
effective bandwidth. However, we have noted (2) that mini-
mum adiabaticity occurs at the midpoint of a sech/tanh pulse
where adiabaticity is a function of (b/RF2)/Tp, supporting a
linear relationship like Eq. [8] rather than quadratic Eqs. [3] or
[7] for maximum efficiency. We have also noted above that
there must necessarily be diminishing returns for phase cycles
longer than STUD1.

Practical 13C Decoupling Parameters

Figures 6–9 provide all necessary parameter settings for
broadband13C decoupling for effective bandwidths from 7 to
95 kHz. From this and previous work (10), values for band-
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widths beyond 100 kHz will not diverge from the master curve
much more than thebwdth 5 100 kHz results.

The first step in utilizing these calibration curves is to
choose a required effective bandwidth and an acceptable
MSB level or, equivalently, a minimumCB level. TheMSB
values in Fig. 8 correspond to the edge of the effective
bandwidth, and so most of the spectrum will be more
efficiently decoupled. Also, most single-bond13C1H cou-
pling constants are around 150 Hz or less. So if an accept-
ableMSB is chosen to be 1.5% andJo # 150 Hz, from Eq.
[12] very few resonances will have a centerband amplitude
less than 91% if the appropriate conditions calibrated in
Figs. 6 –9 are applied. Similarly,MSB5 2.5 or 2.5% leads
to CB $ 86 or 80%, respectively.

Accepting thatJo # 150 Hz for almost all13C resonances,
and recognizing that within experimental error there are linear
relations between MSB21 andm1 andm2 (as described in the

legend to Fig. 7), then from Eq. [9],bwdthcan be determined
from a chosen effective bandwidth,bweff as

bwdth5 1.31 0.8/MSB1 ~1.0051 0.008/MSB!bweff.

[14]

Tp (5 b/RF2) can be determined from the master curve equation
in the Fig. 8 legend, but forMSB $ 1%, Eq. [11] suffices so

Tp 5 ~MSB/0.72!0.5. [15]

From Fig. 6 the truncation factor,b, can be extracted as

b 5 sech21@0.235/~1 1 0.16bwdth!#, [16]

FIG. 9. Various plots ofMSBversusJoTp or Job/RF2. The previous results for STUD are minimumMSB levels taken from Fig. 3a of Ref. (2), illustrating
the improvement in decoupling performance using STUD1. The master curve for STUD1 is the alternative parabolic fit through the origin from Fig. 8. The
on-resonance curve versusJoTp corresponds to Eq. [5], and the same data plotted versusJob/RF2 have been converted using Eq. [3]. The curve for ideal decoupling
is given by Eq. [13]. Thex-axes are dimensionless.
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and finally, calculatingRFmax from b/RF2 with the variable
truncation factor included,

RFmax 5 ~bbwdth/5.3Tp!
0.5. [17]

In these equations, the units ofbwdth, bweff, andRFmax are in
kHz; Tp is in ms; andMSB is in percent.

If an upper limit of 150 Hz forJo is considered to be too low,
then a small correction can be made tobwdth by linear
interpolation between Eq. [14] and an equivalent equation
derived from Fig. 7 forJo 5 223 Hz yielding

bwdth5 0.61 5e23Jo 1 0.8/MSB

1 ~0.9951 7e25Jo 1 0.008/MSB!bweff. [18]

In addition, the more general equation,

Tp 5 ~MSB/32!0.5/Jo, [19]

should be used in place of Eq. [15] (the units ofTp are changed
back to seconds).

Thus all of the input parametersRFmax, b, Tp, andbwdth,
for the sech/tanh pulse in STUD1 decoupling, as described in
Eqs. [1] and [2], can be expressed in terms of chosen values of
MSB, bweff, andJo.

CONCLUSIONS

The major findings of this detailed study of the variables
governing STUD1 broadband decoupling under the most ef-
ficient conditions are displayed in Fig. 8—master calibration
curves for the centerband (CB), and for the maximum side-
band amplitude (MSB), as determined by the four most critical
experimental parameters: the maximum amplitude of the RF
field, RFmax; the length of the sech/tanh pulse,Tp; the extent of
the frequency sweep,bwdth; and the coupling constant,Jo.
Less critical parameters (the truncation factor,b, and the
effective decoupled bandwidth,bweff), which become more
important as bandwidths are decreased, are calibrated in Figs.
6 and 7. These three figures will be most useful for13C
decoupling, covering the range of one-bond13C1H coupling
constants from 125 to 225 Hz, and decoupled bandwidths of 7
to 100 kHz, with a bandwidth of 100 kHz being the require-
ment for a 2-GHz spectrometer.

It is straightforward to apply these calibration curves and
their associated formulae. Determination of the most efficient
conditions for broadband decoupling, in terms of minimizing
the average RF power deposition in the sample, first requires
the user to choosebweff for a particular decoupling application
and either an acceptable minimumCB or an acceptableMSB.
A chosen minimumCB can be converted toMSBvia Eq. [12]
and then all other parameters are given by Eqs. [14]–[17].
Alternatively, if an upper limit of 150 Hz forJo is considered

to be too low, Eqs. [18] and [19] can replace [14] and [15].
Even though the dependence on the most critical parameters
can be summarized in one figure, this series of equations is
required for accurate calibration of efficient decoupling. How-
ever, on an NMR spectrometer it is straightforward to combine
all these equations in one computer macro which generates the
entire STUD1 waveform based on user inputs of justMSB(or
minimum CB), bweff, and maximumJo.

While the coefficients in Eqs. [12], and [14]–[19], have all
been determined by experiment, the form of these equations
can be inferred from theoretical considerations and further
support was obtained from computer simulations. In particular,
via the expression 0.25[12 cos(pJ#Tp/2)], which is half the
amplitude of the S-spin FID modulation during the first decou-
pling pulse, the recent vector model of adiabatic decoupling in
the high power limit (3) predictsCB decreases linearly as a
function of increasingMSB, and it predicts a simple parabolic
relationship between maximum sideband amplitude and the
productJoTp. The relationships betweenbwdth, bweff, andb
can be demonstrated by calculation of the inversion profile for
a single pulse. Indeed, the only relation encompassed by these
equations which does not have direct theoretical support is that
betweenTp andb/RF2 (i.e., bwdth/(RFmax)

2), and even this is
suggested by the basic equation that defines adherence to the
adiabatic condition, as shown in (2). Considering the agree-
ment between theory and the large number of experiments, we
expect that we have determined true efficiency maxima for
STUD1 and have not overlooked more efficient decoupling by
some untried combination of these parameters.

The vector model also demonstrates that even if each adia-
batic pulse in the decoupling scheme is ideal, cycling side-
bands will still be generated (3). This allowed us to show in
Fig. 9 that only a small percentage increase in efficiency was
still theoretically possible in comparison to the large gain in
going from STUD to STUD1. However, taking STUD1 as the
new base level, if we consider a givenMSB value, the theo-
retical performance limit for ideal decoupling is still 25% more
efficient in terms of average RF power than can be achieved
using the off-resonance set of calibration equations developed
here, or 17% more efficient than can be obtained on resonance.
So, a further improvement of, say, 10% in the performance of
STUD1 might be considered possible and worthwhile. Fur-
thermore, we have noted that this scope for improvement does
not include any advantage that might be made in favourably
changing the relationship betweenTp and b/RF2. However,
further overall gains of the order of 10% may be difficult to
achieve by an approach that is primarily experimental as in this
work, since the small improvements in decoupling perfor-
mance that might comprise an overall 10% improvement will
not be obvious relative to experimental error. Such advances
might be better approached through theoretical simulations.
The knowledge obtained from the present study can be used as
a guide or basis for such simulations. For example, calculations
of MSB levels for different phase cycles can be compared with
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the estimate given by the expression for ideal decoupling,
0.25[1 2 cos(pJ#Tp/2)], as a performance indicator. Another
approach would be to attempt to improve the squareness of the
profiles for decoupling over small to moderate bandwidths
(decrease them1 values of Fig. 7), by changing the form of the
adiabatic pulse, and it should be sufficient to investigate the
inversion profiles of single pulses for this purpose. We also
expect that characterization ofbweff by exhaustive computer
simulations, rather than the experimental approach used here,
should improve efficiency by about 5%.

We now propose that there are three major requirements for
efficient adiabatic decoupling. First, the key to recent devel-
opments has been improvements in the phase cycle. When
composite-pulse decoupling was introduced, it was noted (17)
in regard to adiabatic decoupling, “Unfortunately with this
(phase) cycle it is difficult to meet the adiabatic conditions and
still complete a full (phase) cycle in a short time compared with
1/(2pJ) sec.” From the vector model (3), this work, and other
recent studies, we now know that the requirement is that the
length of the adiabatic inversion pulseTp, not the phase cycle
or one of the constituent subcycles, should satisfy the relation
pJ Tp/2!1, since this limits the size of the 1/Tp sideband
which dominates under ideal adiabatic conditions. A good
phase cycle is then required to correct for poor inversions at
lower RF power. The four-phase M4 cycle, developed theo-
retically and extended in the MLEV cycles as used in compos-
ite-pulse decoupling (17), was also used for CHIRP (17, 18),
the first application of adiabatic decoupling. Progressive im-
provements in decoupling performance were demonstrated in
DAP-16 (15) using the MLEV16 cycle (7), in STUD (1) with
the M4P5 cycle (13), and then additional useful cycles resulted
from a new algorithm (4) combined with cycle concatenation
and inclusion of the P9 cycle (12, 14), yielding STUD1. All
the competitive schemes listed in Ref. (4) are concatenations of
the singly nested cycles, M4P5, M4P9, and P5P9, but doubly
nesting the cycles as in P5M4P9 is not effective. Any further
significant improvement in phase cycling would thus seem to
require a new competitive single cycle to add to M4, P5, and
P9, if that is possible.

The second major requirement is a good adiabatic inversion
pulse. The sech/tanh pulse (5) is more than a decade older than
a recently discovered family of pulses which are characterized
by the property that the time derivative of the frequency
modulation function is proportional to the square of the am-
plitude modulation function (19, 20) (making the minimum
adiabaticity of the pulse relatively insensitive to resonance
offset). Tannu´s and Garwood (20) demonstrated that members
of this family of pulses have the same inversion efficiency at
the center of the inversion bandwidth at the same average RF
power and the samebwdthvalue. While this indicates that they
will provide equivalent decoupling performance on resonance,
the outstanding decoupling performance of the sech/tanh pulse
is directly related tobeff being very close to 100% ofbwdth,
as has been demonstrated here and elsewhere. Therefore none

of these new pulses can be expected to have a significant
improvement in this area. In addition, the sech/tanh pulse is
already a member of this family, so there is no further im-
provement the method of Refs. (19, 20) can make to the
sech/tanh pulse. However, we have obtained improved inver-
sion profiles by modifying the sech/tanh waveforms to make
the minimum adiabatic factor for the pulse exactly constant
over a large range of resonance offsets. But the complexity of
the procedure requires a numerically designed pulse, and the
5–10% potential improvement is counterbalanced by the sim-
plicity of implementing the original sech/tanh waveform with
computer macros.

The third major requirement is to maximize efficiency with
respect to the ideal performance limits discussed here and in
Ref. (3) by determining the coefficients of the simple linear and
parabolic relationships between the relevant decoupling param-
eters which are summarized in Eqs. [12] and [14]–[19] for
STUD1 decoupling. We expect this procedure will be general
for any good combination of adiabatic inversion pulse and
phase cycle. These formulae are concerned with single de-
coupled NMR transients and so both minimize sideband am-
plitudes and maximize centerband amplitudes, which is not
possible via multi-transient methods.
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